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GRAPHICAL SOLUTIONS OF GEOLOGIC PROBLEMS 

Introduction 

The geologists and engineers in the Soil Conservation Service in the 
course of their duties encounter problems in determining the true 
location, attitude, or orientation of geologic structures. 

These problems can usually be solved mathematically but the mathematics 
is often quite involved. Graphical methods that are rapid and accurate 
to use will give valid results. 

Scope 

This technical release covers some of the basic techniques in graphical 
solutions of three dimensional problems involving points, lines, and 
planes. These techniques will give attitude, location, distance, and 
dimensions in the solution. The techniques of using hemispherical nets 
for the solution of problems are also covered. These techniques while 
they give attitudes and direction do not provide distance and dimension 
in the solutions. 

The procedures presented herein are not new or original but have been 
used by geologists for a number of years. This is a compilation that 
has assembled material from various sources into one document that 
will be readily accessible to SCS geologists. If additional informa- 
tion is desired about these techniques the reader is referred to the 
references listed at the end of this TR. 

Orthographic Projections 

A geologic structure has a fixed position in the earth's crust. When 
this position has been determined by a survey method (transit, plane 
table and alidade, or compass bearing) the observer must consider 
this position as fixed. If the observer wishes to view this structure 
from another position, he must look directly at the position he wishes 
to see. In a sense, the observer must think and visualize the struc- 
ture in three dimensions. If he does this, he can always observe 
directly the view he wishes to see. 

The orthographic projection is a right-angle type of projection. It 
uses parallel lines for projection at right angles to an image plane. 
The image plane is the plane on which a view is projected. A folding 
line is the intersection of two image planes. 

Drawing equipment needed for solution of problems by orthographic pro- 
jection are: paper, T-square and/or triangles, scale, protractor, and 
drawing pencils. Dividers and a compass are useful at times, but a 
scale can usually be used. The lines drawn should be fine and sharp 
and points well defined. All angles and measurements must be laid off 
accurately. 
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The plan view is the basic view. All other views must be rotated about 
folding lines into the image plane which is the plane of the paper. 
Figure 1 is an illustration of several views projected by orthographic 
projection. Basic information given is: a stratum of rock outcrops, 
the width of the outcrop is 0, and the stratum dips 45' due south.. The 
isometric sketch (not to scale) in the lower right-hand corner is the 
block of rock we are considering in this figure. 

From the given information views 1 and 2 are constructed. 
(View 1) is drawn first. 

The plan view 
The view that can be drawn next is a north- 

south cross section. This cross section is rotated into the plane of 
the paper by rotation around a folding line (FL) drawn in a north-south 
direction. The points Al, Bl ,...Hl, are projected perpendicular to the 
folding line to view 2. Point C2F2 is located any convenient distance 
below the folding line, the'45O angle laid off, and a line drawn from 
C2F2 to the intersection of the line projecting points AlBl from view 
1 to view 2. Line E2D2-A2G2 is parallel to C2F2-B2H2 and the various 
points found at the intersection of projection lines from view 1. 

It is desirable to label all points and folding lines. In Figure 1 
the points are all labeled with a letter and number. The letter 
designation remains the same in all views while the number portion 
changes to the view number. A convenient method of labeling folding 
lines is by use of the symbol FL to indicate a folding line and a two- 
number designation showing the view projected from and the view pro- 
jected to. In Figure 1 in the label FL l/2, FL indicates the folding 
line; the 1 indicates on which side of the folding line view 1 is 
located and that it was drawn first; and the 2 indicates which side of 
the folding line view 2 is located and that it was drawn second and 
by projection from view 1. 

View 3 was drawn third by projection from view 1 as indicated by the 
notation FL l/3 on the folding line. View 3 is related to view 1 in 
the same manner as view 2 is related to view 1. Therefore, all points 
in view 3 (A3, B3 ,...H3) are located the same distance from FL l/3 as 
points A2, B2,... H2 are from FL l/2 in view 2. 

View 5 was constructed by projection from view 4 perpendicular to FL 
415. View 4 is related to view 5 and to view 1, therefore, point A5 
is the same distance from FL 4/5 as point Al is from FL 4/l. 

This relationship of views is the basis of orthographic projection. 
Enough information to construct 2 views must be available if additional 
views are to be constructed. 
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Depth to a Dipping Bed 

Depth to a dipping bed may be readily determined if the dip and strike 
of the bed and surface elevations are known. 

Figure 2 is the graphical solution of a problem with the following 
data known: At point A the top of a shale bed with a dip of 15' to 
the S45OW outcrops; at point B 100 feet due east of A the bottom of 
the shale bed outcrops with the same dip and strike; across a ridge 
292 feet due west is the Za, point in a valley on the centerline of 
a structure. Asswne all three points are the same elevation. At 
what depth would the top of the shale be encountered in a test hole, 
what thickness of shaZe would be penetrated by a vertical test hole, 
what is the true thickness of the shale, and what is the outcrop 
width of the shale? 

To solve this problem, points A and B and the test hole are located on 
a plan view. The strike of the shale at points A and B is drawn 
(N45'W) and the direction of the dip indicated. A folding line 
(FL l/2) is drawn east of point B and the strike of the two beds is 
projected to the folding line. An angle of 15O is laid off between 
the FL and point A (or B) and the top and bottom of the shale bed is 
drawn. The test hole is projected at right angles to FL l/2 and the 
depth, thickness, etc., measured from the drawing. If the elevation 
of the test hole is different than points A and B, the difference in 
elevation can be subtracted or added to the depth (60 feet) as scaled 
from the drawing. 



Test hole 
0 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

0 

us0 
Scale in feet 

FIGURE Z.-Orthographic projection. 
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Determine True Dip from One Apparent Dip and the Strike 

A bed strikes north-south and has an apparent dip of 20' to the N65OE. 
What iis the true dip of the bed? 

Figure 3 shows the solution of this problem by two methods--orthographic 
projection and tangent vector method. 

In the orthographic projection (Figure 3-A) a plan view is drawn showing 
the strike and direction of apparent dip. The apparent dip is rotated 
into the plane of the paper around FL l/2 and the apparent dip angle 
of 20° is laid off with a protractor. At any convenient distance along 
the folding line, such as point A, a perpendicular is dropped from 
FL l/2 to the dipping bed and the distance D is measured. Folding line 
3/l is drawn at right angles to the strike of the bed and point A is 
projected FL 3/l at right angles to FL 3/l. The distance D is measured 
in view 3, the bed drawn in and the angle of true dip (22') measured 
with a protractor. The direction of dip is at right angles to the 
strike or due east. 

The tangent vector method is used in figure 3-B to solve the problem. 
In this solution the strike and direction of apparent dip are plotted 
in the plan view. A table of trigonometric functions (or a slide 
rule) is used to obtain the value of the tangent of 20' (0.364). Along 
the apparent dip line in the plan view 3.64 units (a unit is any conven- 
ient length) are laid off. A perpendicular is dropped from the apparent 
dip line to the line representing the bearing of true dip and the dis- 
tance measured from the intersection to point A (4.0 units in this 
case). The table of trigonometric functions or the slide rule is used 
to find the angle whose tangent is 0.40. The true dip is 21.8O due 
east. 
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Determine True Dip from Two Apparent Dip Measurements at Same Point 

27~0 apparent dips measured at point A are: 30°N400E and 15°N150E. 
Find the an&e and direction of true dip. 

Figure 4 is a solution to this problem by orthographic projection. The 
two apparent dips originating at point A are plotted in the plan view. 
FL 2/l and FL l/3 parallel to the two apparent dips are drawn and the 
apparent dip angles (15" and 30') are plotted. 

At any convenient point on FL 2/l a perpendicular is dropped to the 
dipping bed and the distance D measured. This point on FL 2/l is pro- 
jected to the bearing of the apparent dip (point 1) in the plan view. 
The point where a perpendicular with a length of D from FL l/3 to the 
dipping bed is located on FL l/3 and projected to the plan view as 
point 2. Points 1 and 2 in the plan are the location of points of the 
same elevation on the dipping bed. A line connecting points 1 and 2 
is the true strike of the bed (N4OW). 

The true dip is perpendicular to the strike or N86OE. The amount of 
true dip is found by laying off the same distance D in a view perpen- 
dicular to and along the same strike line defined by points 1 and 2. 
This is shown in view 4. 

A less cluttered drawing for the solution of this problem can be con- 
structed by using the lines indicating the direction of apparent dips 
and true dip as the folding lines. This is illustrated in Figure 5. 

Figure 6 is a solution by the tangent vector method of the same 
problem. The plan view is drawn. The tangent of 15' is .268 and the 
tangent of 30' is .577. Therefore, 2.68 and 5.77 units are laid off 
along the respective apparent dip bearing lines. Perpendiculars are 
drawn. A true dip bearing line is drawn from point A to the inter- 
section of the two perpendiculars and the distance (8.27 units) 
measured to give a true dip of 39.6ON86.5OE. 
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FIGURE 5.-True dip from two apparent dips. 
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Three. Point Problem 

Any three points on a plane define the location of that plane if they 
are not in a straight line. Therefore, the dip and strike of a true 
plane surface can be determined from three points. An example of the 
solution of this type of problem follows. 

In a test well at point A a key marker bed is encountered at an eleva- 
tion of 850 feet. Point B, the second test well, is 1000 feet due 
west of point A and the marker bed is encountered at an eZevation of 
620 feet. At point C, 800 feet S25'E from point B, a third test we22 
encounters this marker bed at elevation 720 feet. What is the true 
dip and strike of this marker bed? 

The location of the three points are plotted at a convenient scale in 
the plan view (Figure 7-A). Line AE is drawn above AB (highest and 
lowest points) and distances equivalent to the difference in elevation 
between points A and B laid off at a convenient scale. A line is drawn 
from the 230 mark on AE to point B (difference in elevation between A 
and B) and a parallel line drawn from the 130 point to line AB. The 
intersection on AB is at an elevation of 720, the same as point C, and 
a line connecting this intersection and point C is the strike of the 
bed. FL l/2 is drawn at right angles to the strike and points A, C, 
and B are projected perpendicular to the FL. Point A is on the FL 
(highest point), point C is 130 feet below, and point B is 230 feet 
below. A line drawn through these 3 points defines the true angle of 
dip in view 2. 

Figure 7B is an alternate solution of the same problem. Sections from 
the highest point (A) to the other two points (B and C) can be consi- 
dered as two apparent dips and the problem solved as described previously 
under two apparent dips from the same point. In the solution FL l/2 
and FL 3/l are drati and 130 feet laid off perpendicular to FL l/2 at 
C and 230 feet perpendicular to FL 3/l at B. Point D is the projection 
in the plan view where the bed is 130 feet below point A in view 3. 
Point C and point D are both 130 feet below A in the plan view and a 
line connecting these points defines the strike. FL 4/l is drawn 
through point A and perpendicular to the strike and 130 feet scaled off 
in view 4 perpendicular to FL 4/l along the strike line defined in the 
plan view. This is the angle of true dip; the bearing of true dip is 
at right angles to the strike. 

In problems similar to the above if the dip angles are very small, it 
is difficult to measure them with a protractor. If these angles are 
converted to linear measurements (feet/mile, feet/feet, etc.) the 
vertical scale can be exaggerated (10, 100, etc., times) to provide 
a workable drawing. It is important to remember if an exaggerated 
vertical scale is used the dip angles cannot be measured with a 
protractor. 



FIGURE 7 -Three pa~nl p!oble;l! 
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Problems Involving Points, Lines, and Planes 

In working problems involving points, lines, and planes, a line is 
assumed to be straight throughout its course and a plane is assumed to 
be a true plane. 

A line, to be shown in its true length in a view, must be projected to 
that view by lines of sight that are at right angles to the line in 
the first view. Stated in another way, to project a line to a view 
where it will be shown in its true length, the folding line (FL) is 
parallel to the line in the first view and the lines of sight are 
perpendicular to the FL. 

The true slope of a line can be seen only in an elevation view which 
shows the line in its true length. The true slope can only be projected 
from the plan view. The true length of a line can be projected from 
views other than the plan view. 

A line will appear as a point in a view taken at right angles to the 
line shown in its true length. 

A plane will appear as a line in the view in which any line in the 
plane appears as a point. Therefore, the true direction and angle of 
dip of a plane will be shown in the elevation view at right angles to 
the strike. 

Problems Involving Points and Lines 
A line dips 20°NZOoE and outcrops at point A. Point % Zies 1000 feet 
N60°W from point A and is 200 feet lower. What is the distance and 
slope in a due east direction from point B to the line? What is the 
shortest distance, direction, and slope from point B to the Tine? 

Figure 8 is the solution for the distance and slope in a due east 
direction. The plan view (view 1) is drawn from the given data. 
Note that line Bl-Cl is in a due east direction. FL l/2 is parallel 
to dipping line originating at A and the angle of dip (20') is laid 
off. Point B2 in view 2 is 200 feet below A2 and point C2 is on the 
dipping line as projected from view 1. FL 3/l is drawn parallel to 
Bl-Cl and these points projected to view 3. The true length (1050 
feet) and true slope (+0.5') of the line is found in view 3. Note : 
the distances from FL 3/l to points B3 and C3 are equal to the dis- 
tances from FL l/2 to point B2 and C2. 
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FIGURE 8 -Three point probleln 
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Figure 9 is the solution for the shortest distance from point B to 
the sloping line. The plan view is drawn except for point Cl which 
is unknown. View 2 is drawn. The shortest distance from point B to 
the sloping line is perpendicular to the sloping line in view 2. 
Perpendicular B2-C2 is drawn and point C projected to the plan view 
(view 1). Line Bl-Cl is the true bearing of the shortest line, the 
true length and slope is found by projection to view 3. 
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Shortest Distance Between Two Non-Parallel,'Non-Intersecting Lines 
An inclined Zinc outcrops at point A and dips 20' true north. Another 
line outcrops at point C, 1500 feet N45'E from point A and 500 feet 
Lower and dips 30°W NW (N67.5OW). Find the azimuth, sZope, and 
Length of the shortest line connecting these two inclined Lines and 
the distance from point A and point C to the intersection of this con- 
necting line. 

The plan view showing the true azimuth of the two lines is drawn in 
view 1, Figure 10. Points Bl and Dl are arbitrary points plotted to 
provide two points on a line so the line may be projected to other 
views. View 3 is drawn to show the true length and slope of line CD. 
View 2 is drawn to show the true length and slope of AB, and CD is 
also projected to this view. View 4 (FL 2/4) is projected perpendicular 
to line A2-B2. In view 4,sthis line is shown as point Ah-B4. 

The shortest distance from a line to a point is perpendicular to the 
line. In view 4, X&Y4 is perpendicular to C4-D4 and is the shortest 
distance between line C4-D4 and point A4B4. It is also shown in its 
true length (540 feet). Point X4 is projected back to view 2 and the 
shortest distance (X2-Y2) from a point (X2) to a line (A2-B2) is again 
perpendicular to the line. Line X2-Y2 is not, however, shown in its 
true length in this view. Points X2 and Y2 are projected to view 1 and 
line Xl-Y1 is the true bearing (S46'E) of the intersecting line con- 
necting Al-B1 and Cl-Dl. The true slope of this intersecting line 
(57 1/2O) is shown by projecting to view 5 (FL l/5 is parallel to Xl-Yl) 
and the true length is again shown and checks (540 feet) with view 4. 
As a further check on the accuracy of the drawing, view 6 perpendicular 
to line C3-D3 could be made and same procedure of projections repeated. 
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Distance From a Point to a Plane 
Points A, B, and C are three points on a plane. Point A has an eleva- 
tion of 300 feet. Point B has an elevation of 500 feet and is 1500 feet 
due east of A. Point C has an elevation of 800 feet and is 1750 feet 
from point A and 1500 feet from point B. Point E is 300 feet N45'W of 
point A at an elevation of 300 feet. Find the distance from point E 
to the plane in the direction S45'E with a plunge of 20'. Locate the 
piercing point of the line and plane and the angle between the line 
and plane. 

The location of the piercing point of the line and plane is found in 
an edge view of the plane. The distance from point E to the piercing 
point is found in the projection that shows a true view of the line. 
The angle between the line and plane is seen in the view that shows 
a true view of the line and an edge view of the plane, 

Figure 11 is the solution of this problem. The plan view (view 1) and 
view 2 (S45OE) are drawn. The 20' angle is laid off in view 2 and 
arbitrary point F2 picked and projected to view 1. View 3 is any 
vertical section and drawn by projecting points A, B, and C and plotting 
them at their proper elevation. Points E and F are projected with 
measurements obtained from view 2. A level (strike) line B3-D3 parallel 
to Fl l/3 is drawn in view 3 and point D projected to the plan view. 
Line Bl-Dl is the strike of the plane. To find the piercing point of 
the line in the plane, an edge view of the plane is needed. This is 
done in view 4 with FL l/4 perpendicular to the strike (Bl-Dl) determined 
in view 1. Note that in view 4 the plane as defined by points A, B, 
and C must be extended to locate the piercing point (P4). The piercing 
point (P4) can be projected back to view 2 (through view 1) to show 
the length of EP (150 feet) in its true view. 

The angle the line EP makes with the plane can only be seen in its 
true position in a true view of the line and an edge view of the plane. 
This requires two additional projections. First view 5 is drawn 
parallel to A&C4-B4, to show the plane in a true view and then view 
6 is drawn parallel to E5-P5-F5 to show the line in a true view and 
the plane as an edge view. The distance D6-P6, the true length, checks 
with distance E2-P2 (150 feet) and angle B6-~6-~6 can be measured 
(36O) which is the true angle between the line and plane. 
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The nomenclature for fault displacements as used in this technical 
release is illustrated in Figure 12. This is the same nomenclature 
as used by Billings (1954). 
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Determine the Line of Intersection of Two Oblique Planes 
In the folZowing example determine the bearing and plunge of the line 
of intersection betieen tie planes and the rake (pitch) of that line 
in each plane. The given information is: a bed dips 30°N100W and a 
fault dips 20 OS45Ow. 

In Figure 13 the plan view, view 1, is drawn from the given information. 
Draw the strike of the bed and fault and indicate the direction of dip. 
Next, views 2 and 3 are drawn perpendicular to the strike and the amount 
of dip is plotted for each. At an arbitrary distance X below and 
parallel to folding lines 2/l and l/3 an auxillary plane is drawn. This 
auxillary plane defines a common distance below the plan view and 
remains constant throughout the solution of the problem. Points A and 
B are the projections to the plan view of the intersection of the fault 
and the bed with the auxillary plane. These points (A and B) define, 
in the plan view, a point on the fault and the bed that is X distance 
beneath the surface. A line drawn from A to C parallel to the strike 
of the fault is a structure contour on the fault plane. The line from 
B to C is also a structure contour on the bed at the same elevation as 
the structure contour' on the fault. These two structure contours 
intersect at point C. Point 0 is the intersection of the fault and bed 
in the plan view and point C is the projection into the plan view of 
the intersection of the auxiliary plane or structure contours. Two 
points on the intersection determine the bearing of the intersection, 
therefore, line OC connecting these points is the bearing (N79OW) of 
the intersection of the two planes. The plunge of the intersection is 
determined in a vertical section. FL 4/l is drawn parallel to N7g"W, 
points 0 and C projected perpendicular to FL 4/l and distance X laid 
off on the projection of point C and the angle measured. 

To determine the rake (pitch) of the intersection in the plane of the 
fault, it is necessary to rotate the fault into the plan view. Use GH 
as a radius and G as the center, draw an arc to intersect FL l/3. This 
point on FL l/3 is the location of point H when the fault is rotated 
into a horizontal position. A line is drawn from this point on FL l/3 
parallel to the strike of the fault (this line is also a structure 
contour line X distance beneath the surface rotated to the surface). 
A perpendicular from this line to point C defines point D. This is 
the same relationship as point A has on the GH arc on FL l/3. Point 
D is the projection of point C when the fault is rotated into the 
horizontal (plan) view. The rake of the intersection of these two 
planes in the plane of the fault is measured between the strike of the 
fault and line OD, which is on the plane of the fault rotated into the 
plan view. 

The rake of the intersection in the plane of the bed is determined in 
the same manner starting from view 2 and rotating the auxillary plane 
into the horizontal. 
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FIGURE 13 htersectlon of two oblique planes. 



Displacement of a Vertical Fault 0 

The displacement of a vertical fault can be determined if the attitude 
and location of two displaced horizons on each side of the fault are 
known. The location of additional horizons on one side of the fault 
can be found if their location on the other side is known. 

Figure 14 is the graphical solution of the following problem: A vertica2 
fault strikes east-west and is exposed at point A; a vein with a dip of 
30°S300E outcrops at point B on the north side of the fault and point 
C on the south side of the fault. Another vein with a dip of 45OS45OW 
outcrops at point D on the north side of the fauZt and point E on the 
south side of the fault. A third vein with a dip of 20°S700W outcrops 
at point F. 

Point B is 300 feet north of A 
Point C is 300 feet south of A 
Point D is 2500 feet east of B 
Point E is 2500 feet east of C 
Point F is 1500 feet east of E 

Find the true displacement of the fauZt and find continuation of third 
vein on north side of fault. 

The vertical fault and the six points are drawn in the plan view as 
shown in Figure14. Through points B, C, D, E, and F strike lines are 
drawn for the veins and extended to intersect the vertical fault. The 
direction of dip is indicated on each strike line. 

Next draw views 2, 3, and 4 with the folding lines perpendicular to 
the strike. The angle of dip is laid off in the proper direction in 
each view and an auxillary plane "h" distance below the folding line 
is drawn. This h distance is the same wherever used in the solution 
of this problem. It represents the elevation of a structure contour 
line on the vein at h distance below the surface. Points M and L are 
the location projected into the plan view of the intersection of these 
structure contours and the vertical fault. 

Next it is necessary to find the line of intersection of the veins on 
the fault. To do this the fault is rotated into the horizontal or plan 
view about its trace at the surface. Since this is a vertical fault 
the structure contour at h elevation on the fault when rotated into the 
horizontal will be h distance from the trace and is drawn as RR on 
Figure 14. Points M and L which are the location of the intersection 
of the structure contours of the veins and the fault must also be 
rotated into the horizontal. This is done by drawing perpendiculars 
from M and L to RR. Lines are drawn from J through the intersection 
of M on RR and K through the intersection of L on RR to their inter- 
section at S. These lines are the trace rotated into the horizontal 
of the veins on the south wall of the fault and S is their point of 
intersection. Lines parallel to JS and KS are drawn from the inter- 
section of the veins on the north side of the fault and the fault to 
their intersection at N. These lines are the trace of the veins on the 
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north wall of the fault and N is their intersection. Since S and N 
were together before faulting line SN is the net slip. The dip and 
strike components can be determined by constructing the horizontal and 
vertical components as shown. 

Point N is down and to the east of point S so the relative movement of 
the fault is the north block moved down and to the east in relation to 
the south block. The net slip is 330 feet, the strike slip is 90 feet, 
and tie dip slip is 310 feet. 

To find the extension of the third vein on the north side of the fault, 
view 4 is drawn with angle of dip and h distance laid off and point P 
found by .projection. A perpendicular from P to RR is made and the line 
from Q through the projection drawn. SN in its proper orientation and 
length is transposed to some convenient location such as SIN'. A line 
parallel to S'Q is drawn from N' to the vertical fault. This is the 
point where the vein on the north side of the fault intersects the 
fault. The strike of the vein is drawn and point G on the vein is 
found to be 2,280 feet east of point D. 
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Displacement of an Inclined Fault 

The graphical solution of an inclined fault problem is much the same 
as with the vertical fault. Figure 15 is the solution of the same 
problem as given for Figure 14 except in this problem the fault dips 
45' south. 

The plan view is laid out and views 2, 3, and 4 drawn as before. The 
distance h, an arbitrary distance below the folding lines, defines an 
auxillary plane or structure contour and h remains constant wherever 
used throughout the problem. 

View 5 of the fault is drawn, the angle of the fault (45') and the h 
distance plotted. Line RR is the trace on the fault of the structure 
contour h distance below the surface proj,ected into the plan view. 
Points M, L, and P are the projection into the plan view of the inter- 
section of the structure contours on the veins with the structure 
contour on the fault. 

To find the net slip of the fault, the fault must be rotated about W 
into the horizontal or plan view. This is done by swinging an arc in 
view 5 using the intersection of VV and FL l/5 as the center and the 
intersection of h and the dipping fault as the radius. Line TT is 
drawn parallel to W through the point where the arc intersects FL l/5. 

Perpendiculars are dropped from points M and P to TT. The point S' 
is defined by the intersection of lines from J through the projection 
of M on TT and K through the projection of L on TT. N' is defined by 
drawing lines from the intersection of the veins on the north side of 
the fault with W parallel to JS' and LS'. S'N' is the net slip of 
the fault (1050 feet). 

The projection into the plan view of the net slip of the fault is SN. 
This is found by drawing lines JM and KL to S and lines parallel to JS 
and KS from the veins on the north side of the fault to N. The relative 
movement along the fault is the north side moved down and to the east 
in relation to the south side. 

To find the plunge of the net slip, a view parallel to NS to show NS 
in its true position can be constructed. This view can be moved to an 
uncluttered part of the paper and constructed in the following steps. 
Find the difference in elevation between points N and S. This is 
accomplished by projecting points N and S parallel to VV to their inter- 
section with the fault in view 5. Since N and S were together before 
faulting, projecting their intersection on the fault to line W gives 
the interval 1, 2, which is their difference in elevation. On a sepa- 
rate part of the paper lay off the distance (850 feet) SN. From N drop 
a perpendicular equal to the difference in elevation l-2, then draw 
s-2. The plunge of the net slip is 44", the net slip (S-2) is 1050 feet 
and is equal to S'N'. 

To find the location of the third vein on the north side of the fault, a 
line is drawn from Q through the projection of P on TT. This line intersects 
S'N' at S'. A line parallel to QS' is drawn from N' to W. The strike of 
the third vein is drawn from this intersection on W. Point G on the third 
vein is found 3,620 feet east of point D. 
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Stereographic Projection 

Stereographic projection is a rapid method of solving some geologic 
problems if angles and spatial relations between lines and planes are 
needed. The following examples illustrate some of the uses of stereo- 
graphic projections. 

The stereographic or Wulff meridional stereonet is shown in Figure 
16. Extra copies are provided at the back of this technical release. 
If a sphere with meridional or great circles and pole or small circles 
drawn two degrees apart on its surface was cut in half through the poles, 
Figure 16 is a projection of these arcs on the equatorial plane. The 
bearing of lines or planes is measured from the north and south poles 
along the small circles. The dip of lines and planes is measured along 
the great circles, the amount (degrees) of dip being counted in from 
the periphery of the net along the east-west axis. 



. 

FIGURE 16. - Wulff net 
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True Dip from Two Apparent Dips 

If, from a common point, tuo apparent dips are measured, 30°N400E and 
15"Nl5OE, detemine the bearing and amount of true dip. 

Figure 17 is the solution of this problem. The stereonet, Figure 16, 
is taped to a desk or drawing board and overlaid by tracing paper. 
The tracing paper is fastened at the center of the net either by a pin 
or a reversed thumb tack placed beneath the net so that it may be 
rotated. The north, south, east, and west points on the perimeter of 
the net are marked on the tracing paper. 

With the four cardinal compass points marked on the tracing paper and 
in their true positions with respect to the stereonet, lines indicating 
the bearing of the two apparent dips (Nl5'E and N40°E) are drawn from 
the center of the net to the edge. Next the paper is rotated so the 
N40°E line coincides with the east line of the net. The amount of dip 
(30') is counted in from the perimeter and marked. The N15'E line is 
then rotated to the east diameter and 15' counted in from the perimeter 
and marked. The paper is then rotated until the two apparent dips 
(15O and 30') lie on the same great circle. The great circle is traced 
and the north-south (strike) and east (dip) diameter drawn. The amount 
of true dip is 40° counted in from perimeter of great circle on the 
east diameter. The paper is then rotated to its original position 
with the two apparent dips in the N15'E and N40°E direction and the 
bearing of true dip is read as N86OE. 
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FIGURE 17.-True dip from two apparent dips. 
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Apparent Dip from True Dip 

When drawing cross sections and other type illustrations, it is not 
always possible to draw them perpendicular to the strike. In these 
cases the apparent dip should be plotted, not true dip. The stereo- 
net is a fast method of obtaining apparent dips when the true dip is 
known. 

The following problem is an example. A bed dips 30°~~400W. What is 
the apparent dip in the S70°W direction? 

Figure 18 is the solution of this problem. The bearing of true dip 
(N40°W) and direction of apparent dip (S7O'W) are plotted; the bearing 
of true dip is rotated to the west diameter; 30' counted in from the 
perimeter; and the great circle is drawn. The paper is then rotated 
so the line of the bearing of the apparent dip desired (S70°W) is on 
the west diameter and the amount of apparent dip (11') counted in from 
the perimeter. 
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FIGURE 18 -Apparent dip from true drip 
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Line of Intersection of Two Oblique Planes 

A bed dips 30°N100W and a fault dips 20°S450W. What is the bearing 
and plunge the line of intersection betmeen the bed and the fault and 
what is the rake of this line in the plane of the bed and in the 
plane of the fault? 

Figure 19 is the solution. The bearing of the dip of the bed and the 
fault are drawn. The NlOOW line is rotated to the west diameter and 
30° counted in and the great circle drawn. This is repeated for the 
S45OW line. A line from the center of the net through the point of 
intersection of the two great circles is the line of intersection of 
the two planes. Rotating the tracing paper to its original position 
the bearing of the intersection is N81°W. Rotate the paper so the 
N81°W line is on the west diameter and the plunge of the intersection 
counting in from the periphery is 12'. 

To determine the rake of the line of intersection in the plane of the 
fault rotate the tracing paper so the strike of the fault is along 
the north-south axis. The rake (36') is found by counting the small 
circles from the north pole along the great circle of the fault to the 
point of intersection determined above. To determine the rake of the 
line for the bed, the strike of the bed is placed on the north-south 
axis and the angle found by again counting the small circle to the 
point of intersection. 
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FIGURE 19 - Intersection of two oblique planes 



Occasionally it is desirable to restore to their original position 
beds, faults, and joints that have been rotated. This is easily and 
quickly done by stereographic projection. The following problem is 
an example. 

Tuo beds are separated by an unconformity. 
and the lower bed dips 40°N200E. 

The top bed dips lS0S200E 
Find the dip and strike of the Zmer 

bed when the top bed was horizontal (being deposited). 

In Figure 20 the great circles for the dip and strike of the two beds s 

are drawn as in the previous examples. To find the dip and strike of 
the lower bed when the top bed was horizontal it is necessary to 
rotate the top bed into the horizontal and the bottom bed through the . 
same amount of rotation. This is accomplished by moving the paper so 
the strike line of the top bed is on the north-south diameter. All 
points on the great circle of the top bed when it is rotated 15O into 
the horizontal will fall on the perimeter of the net. This includes 
point A which is the intersection of the two great circles. Likewise 
all other points on the great circle of the lower bed will also rotate 
15' along the small circles. A few of these points are indicated by 
the dashed lines. Point A is a position of zero dip, so it is rotated 
to the north pole. A great circle is drawn from point A and connecting 
the ends of the dashed arcs. This great circle (dashed) represents 
the position of the lower bed (52ON12OE) when the top bed was horizontal. 

0 
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Rotation of a Fault 

If the same bed has a different dip and strike on opposite sides of a 
fault, rotation along the fault has occurred. In the previous example 
rotation of the bed was about a horizontal axis. To solve problems of 
rotation about an inclined axis, an additional step of rotating the 
axis into a horizontal or vertical position before rotating the beds 
is required. 

The following problem is an example. A fauZt dips 30°N200E. A bed in 
the south block dips 10°N200W, and a bed in the north block dips 28*N30°W. 
What has been the rotation of the north bZock with respect to the south 
bZock CangZe and cZockwise or counter-cZockwisel and is the fauZt move- 
ment simpZe rotation? 

The problem can be solved in three steps. First the fault plane is 
rotated into the horizontal, the beds are moved through the same angle 
of rotation, the angle of rotation between the beds can then be measured. 
Second the fault plane is rotated to the vertical and the beds again 
move the same amount. Third the north bed is rotated through the angle 
of rotation determined in the first step about an axis perpendicular 
to the fault plane to see if it coincides with the south bed. If it 
does, the fault movement is simple rotation. 

In Figure 2l.A the great circles representing the attitude and dip of 
the two beds and the fault are plotted as before. Rotation has occurred 
along the fault, therefore, the axis of rotation of the fault must be 
perpendicular to the fault. To measure the angular difference (angle 
of rotation) between the two beds the axis or rotation of the fault is 
rotated to the vertical (fault rotated to horizontal). The two beds are 
rotated through the same angle. To do this the strike of the fault is 
placed on the north-south diameter and the dip on the east diameter. 
When the fault is rotated 30' into the horizontal its great circle 
coincides with the periphery of the net. With the tracing paper held 
in the same position the two great circles representing the two beds 
are rotated 30' in the same direction as indicated by the dashed lines. 
Great circles, indicated by the hachure lines, are found by rotating 
the tracing paper until the points projected by dotted lines lie on 
the same great circle. The angle between the two beds can be measured, 
as indicated, on the periphery of the net. 
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FIGURE 21 A.-Rotation about an inclined axis. 
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0 
Figure 21B shows the second and third steps. In the second step the 
fault is rotated to a vertical position, the axis of rotation of the 
fault will then be horizontal and the beds can then be rotated about 
the horizontal axis. Rotation of the fault to the vertical is oppo- 
site of the horizontal rotation done in the first step. The strike of 
the fault (original plotted position again) is placed on the north- 
south axis and dip on the east diameter. To rotate the fault to the 
vertical it is rotated 60' down (east to west), the great circle will 
then coincide with the north-south axis of the net. With the tracing 
paper held in the same position the two beds are rotated 60~ in the 
same direction. Their new locations are indicated by the hachured 
great circles. 

The third step involves rotating the north bed through the angle 
determined in the first step about the axis of rotation normal to the I 

fault. To do this the tracing paper is rotated so the strike of the 
fault is placed on the east-west diameter. The north bed is rotated 
47" as indicated by the dotted lines. 

When rotated through the angle of 47O the north bed coincides with 
the south bed, therefore, the movement of the fault has been simple 
rotation of 47" of the north block counter-clockwise with respect to 
the south block. 

0 

0 
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Poles 

Rotation of beds on the stereonet can be made more expeditiously by 
using points representing the poles of planes instead of the planes 
themselves. The pole of a plane is a line perpendicular to the plane 
and passing through the center of the stereonet. Every plane, repre- 
sented by a great circle on the stereonet, has a unique point also on 
the net that represents the pole of the plane. 

Figure 22 illustrates the relationship between poles and planes. 
Figure 22A is a three dimensional drawing of the lower reference 
hemisphere. A plane (rock stratum) defined by points N B $ 0 dips 
45O due east. Line A0 perpendicular to the plane and passing through 
the center of the net is the pole. Projecting the pole and plane to 
the stereonet in Figure 21B the plane is defined by the great circle 
N C S and the pole by point P. If the plane had dipped 30°N45'E the 
location of the point defining the pole would be 60' in from the 
periphery or 30' out from the center of the net and have a S45OW 
bearing. 
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FIGURE 22.-Relationship between planes and poles. 
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Rotation of a Bed 

The problem illustrated in Figure 20 can be solved using poles instead 
of planes. The problem reiterated is: It30 beds are separated by an 
unconformity. The top bed dips 15"S20°E and the lower bed dips 40°N200E. 
Find the dip and strike of the lower bed when the top bed was horizontal. 

The pole for the top bed is located 15O out from the center of the net 
(75O in from periphery) with a bearing of N20°W. The pole for the 
lower bed is 40" out from the center of the net (50" in from periphery) 
with a bearing of S20°W. Bearings are laid off on the perimeter of 
the net and dip counted off on the great circles on the east-west 
diameter and the location of the two poles are plotted. Point T is 
the pole of the top bed and point L the lower bed. To determine the 
attitude of the lower bed when the top bed was horizontal the top bed 
must be rotated into the horizontal. To accomplish this the tracing 
paper is rotated until point T is on the east-west diameter (west side 
of center). When the bed is rotated into the horizontal the pole will 
be vertical; therefore, point T moves 15' to 0 and, without moving the 
tracing paper , point L is rotated 15' along the small circle in the 
same direction at T to point L1. The point L1 is the pole of the lower 
bed when the top bed was horizontal. The bearing of point L1 is S12'W 
and the dip counted in from the periphery along the east-west diameter 
is 38O. The attitude of the lower bed, therefore, is 52' (90'-38O) 
N12'E. 

. 
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FIGURE 23 -Rotation using poles 
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Rotation of a Fault 

The problem solved in Figure 21 (rotation about a fault) can also be 
solved using points representing the poles of planes. Figure 24 is 
the solution using this method. 

As given before, a fault dips 30°N200E, a bed in the south block dips 
10°N200W, and a bed in the north block dips 28'N30°E. What has been 
the rotation of the north block with respect to the south block and is 
the fault movement sir&e rotation. 

The pole of the fault (PF) is 6o”s200w (all angles of dip counted in 
from periphery of net), the pole of the south bed (PSB) is 80°S200E, 
and the pole of the north bed (PNB) is 62'S30°E. 

The poles are plotted on the tracing paper as shown in Figure 24. To 
rotate the fault into the horizontal (axis of rotation vertical), the 
tracing paper is rotated until the pole of the fault (PF) is on the 
east-west diameter (west side). When the fault is rotated into the 
horizontal the pole (PF) will move 30' to the center of the net. Points 
PSB and PNB will also move 30° along their respective small circles as 
shown by dashed lines to points PSBH and PNBH. The angle of rotation 
of the fault is measured between lines from the center through points 
PSBH and PNBH. This angle can be conveniently counted along the small 
circles on the periphery as indicated. 

To rotate the fault into the vertical point PF is again located on the 
west radius of the net and rotated out 60' or until point PF is on the 
periphery of the net. The points PSB and PNB are rotated along their 
respective small circles through the same 60~ of rotation to points 
PSBV and PNBV. 

To determine if simple rotation has occurred the north bed must be 
rotated 47O about the axis of rotation which is normal to the fault. 
This is accomplished by rotating the tracing paper until point PF is 
on the north radius of the net. Point PNBV is rotated 47' along its 
small circle where it coincides with point PSBV confirming the movement 
was simple rotation and that the north block was rotated 47' counter- 
clockwise with respect to the south block. 
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FIGURE 24 -Rotation about an inched axis 
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Vertical Drill Holes 

The stereographic technique can be used to solve dip and strike problems 
involving unoriented cores from drill holes. The following is an example. 

Points A and B are the locations of two vertica2 core test hoZes. The 
top of a key marker bed is encountered at elevation 157.5 in hole A and 
the core obtained shows that the bed dips at an angle of 45O. Since 
the core has been rotated in the core barre2, the direction of dip is 
unknown. Hole B is located 100 feet N60°W of hole A and the key marker 
bed uzs encountered at elevation 100.0. What is the attitude of the 
key marker bed? 

From the information given (100 feet horizontally and 57.5 feet verti- 
cally) the apparent dip (30°N600W) from A to B of the key marker bed 
can be determined either trigonometrically or graphically. With an 
apparent dip and bearing and the true dip known, two possibilities of 
the bearing of true dip can be found. More information, such as a third 
test core hole, is necessary to provide the unique solution of the 
bearing of true dip. 

On the tracing paper overlying the stereonet plot the vector representing 
the direction and amount of dip from point A to B (30°N600W). This 
is 0-AB in Figure 25. Next rotate the tracing paper until the end of 
the vector (point AB) lies on a great circle representing 45" of dip. 
There are only two great circles of 45O dip that point AH will fall on 
as shown in Figure 25. Only one of these gives the bearing of true 
dip, but until more information is provided we cannot determine which 
one. The two possibilities of true dip are 45OS68'~ and 45ON7"W. 
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FIGURE 25 -True dip from vertical core holes 
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Inclined Drill Hole 

As another example, consider the same problem excep fi onZy the elevation 
of the top of the bed at 157.5 in hoZe A is known and hole B is inclined 
from the vertical 40' in a S60°W direction (dips 50°S600W) and the beds 
make an angle of 45O with the core axis (dip 45O). 

This is essentially the same problem as the previous one except it will 
also involve rotation. First plot the vectors representing direction 
and dip of the bed from A to B and the direction and dip of the drill 
hole at B. These are points AB and DH on Figure 26. Next, the inclined 
drill hole is rotated to the vertical. The tracing paper is rotated 
so that point DH is on the west radius. When DH is rotated to the 
vertical it moves to 0 and point AB moves through 40' to ABV. Next, 
as in the previous problem, rotate the tracing paper and draw the two 
45O great circles through ABV. The last step is rotate the projection 
back to its original position. Place the original bearing of DH on the 
west radius and rotate DH from 0 to 40°. The two great circles through 
ABV will also rotate 40" to the positions indicated by the hachured 
great circle. These two great circles are the two possibilities of 
dip and strike of the key bed. When the tracing paper is rotated to 
its original position over the net, they are 42'Nll'W and 70°N18'E. 
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FIGURE E-True dip from an inclined core lhole 
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Combination Orthographic and Stereographic Technique 

When solving problems involving displacement of non-rotational faults 
a combination of orthographic and stereographic procedures are often- 
times simpler to use than straight orthographic projections. The 
inclined fault problem in Figure 15 can be solved in the following 
manner by using this combination method. 

Figure 27 is the plan view. The third vein at point F on the south 
side of the fault has not been shown. 

The great circles representing the fault and the two veins are plotted 
on the stereonet in Figure 28. Great circle EXYW represents the fault, 
BXBl the vein located at points B and C, and DYDl the vein.located at 
points D and E. Line X0 on the stereonet is the horizontal projection 
of the trace of the intersection of the vein at B and C with fault. 
Likewise, line OY is the trace of the intersection of the vein at D 
and E with the fault. 

To find the horizontal projection of the net slip, plot the bearings 
(from the stereonet) of line OX and OY on the plan view. Lines XS and 
XIN are the bearing of OX (90" - 59' = 310), and YS and YIN are the 
bearing of OY (90" - 23' = 67O). Their intersection is at S and N. 
Since points S and N were together before faulting, SN is the horizontal 
projection of the net slip (850 feet). The bearing of the net slip 
(SN) is S1gOE. This bearing is plotted on the stereonet as 0-SN. By 
rotating 0-SN until SN is on the South pole and counting in on the 
small circles to the intersection of 0-SN with the great circle of the 
fault tie plunge of the net slip is 44'. 

Next, rotate the tracing paper and place the strike of the fault on 
the north-south diameter. Counting the angle in on the small circles, 
EX (38”) is the rake of vein B in the plane of the fault and WY (74O) 
is the rake of vein D in the plane of the fault. The rake of vein 
B is southeast and vein D southwest. 

To determine the total net slip, return to the plan view (Figure 27) 
and rotate the fault into the horizontal. Since points X1, X, Y, and 
Y1 are at the surface, they do not move when the fault is rotated. 
The angle of rake of a fault is measured in the plane of the fault 
(see Figure 12). If the angle of rake, as determined from the stereo- 
net, of the veins on the fault are plotted in the hlan view, the fault 
will be rotated into the horizontal. From points Xl and X lay off the 
rake angle (38') in a southeast direction, and at Y and Y1 the rake 
angle (74") in a southwest direction. The intersection of these lines 
at S1 and N1 determines line SIN1 which is the net slip (1150 feet) of 
the fault. 



0 200 400 

Scale I" reel 

X Y Yl 

\ 1 

qJ 

\ 

\ 
I 

‘\\ a 

4 

\ 

1’1 

3 
0 

-y 

\ ‘., 
\ 

/I 

\ \ \ ‘1 
\ 

\ \ 

\ ‘1 

\ \ 

‘\ 

\ \ \ 

\ s1/i 

\ 
\ \ 

\ I 

\ ‘, 
\ 

\ 
\ 

\ 

\ 
-. \“‘I 

\ 
‘\ \ % 

\ 
\ 

\ 
\ \ 

\ 
\ ,lf Ii 

\ 
\ 

\ 
i 

\ 
\ 

\ 

/ 1 

\ I 

\ 
5 N 
B 

\ 
I 

\ I 

\ I 

\ 

\ 

1, I 

N1 

FIGURE 27,-Inched fault problem 
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